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SUMMARY 

This paper presents a relatively simple analysis, based on engineering 
principles, to explain the initiation and development of the type of fold struc- 
tures which are most commonly observed in the non-metamorphosed zones 
of the crust; namely, asymmetrical chevron folds or asymmetrical flexures 
with rounded hinges but long straight limbs. The development of anticlinoria 
and synclinoria is also considered. 

INTRODUCTION 

The mode of development of buckle folds has interested geologists for 
many years. Theoretical analyses of the problem have been carried out by 
a number of people, more especially, in recent years by Ramberg (1959, 
1960, 1961, 1963) and Biot (1965). In these analyses the buckling of a single 
competent unit, or series of such units, set in a less competent environment 
is treated as an exercise in either elastic or viscous theory. Compression 
of the competent unit is assumed to take place along its length; and the re- 
sulting folds are invariably upright and symmetrical (by which terms the 
author means the axial planes are vertical and the lengths of the limbs which 
comprise any one fold are equal). Also, the shapes of the crests and troughs 
of the folds are well rounded. Indeed, the final form of the fold profile is 
often sinusoidal, so that the limbs exhibit no straight portions. 

The basic assumption that rock behaves as a viscous material probably 
holds as a reasonable approximation in the environments of high temperature 
and confining pressures obtaining during high grade metamorphism. Confirma- 
tion of the accuracy of the assumption and of the mode of analysis is obtained 
from the fact that the shapes of the folds which result from these analyses 
are often in good agreement with the fold forms observed in metamorphic 
rocks. 

However, outside the zones where metamorphism is taking place, where 
temperatures and confining pressures are lower, the assumption that com- 
petent rock behaves as a completely‘viscous material is not tenable. The as- 
sumption that such rocks will behave as completely elastic materials, even 
when the strains are not infinitesimal, is also obviously invalid. It is not 
surprising, therefore, that the shapes of the folds predicted by theory 
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commonly show considerable divergence from those exhibited by the natural 
folds which develop in competent units in the upper. non-metamorphic zones 
of the crust. 

In profile, the folds in such zones are almost invariably asymmetrical. 
(Here, the author takes the ratio of the length of the long limb, tl, to the 
short limb, Lst to represent the degree of asymmetry; the higher the ratio, 
the higher is the degree of asymmetry). Also, it is usually found that some 
portion of the fold flanks are straight. Indeed, in chevron folds, the whole 
length of the limb is straight. 

Published data which give the ratio of the length of limbs from field 
observations are scarce; however, by referring to Fig.1. and comparing 
these shapes with various sections taken from field observations, it is sug- 
gested that competent buckle folds which develop in non-metamor~osed 
rocks rarely exhibit a limb-length ratio of less than 1.5 : 1. The majority of 
folds exhibit limb-length ratios of between 2 : 1 and 4 : 1, and folds which ex- 
hibit ratios of greater than 5 to 6 : 1 are also infrequently observed. More- 
over, when the ratio of limb lengths is small, the axial plane of the structure 
is almost invariably inclined. 

However, it must be pointed out that throughout a section, taken in a 
plane normal to the fold axes, the degree of asymmetry of successive folds 
is rarely completely constant; neither are the dips of the corresponding long 
or short limbs of successive folds necessarily similar, nor are the acute 
angles separating adjacent limbs constant. Indeed, it is frequently observed 
that the only feature of a fold belt which exhibits any degree of regularity is 
that the axial planes of the various folds are usuafiy “sub-parallel”. 

Again, the extent to which axial planes in one group of folds diverge 
from being parallel is rarely specified in the literature. However, from 
general field observations it is suggested that the divergence is commonly 
less than 15’. 

It is often assumed in geological literature that the axis of greatest 
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Fig.1. Diagrammatic representation of chevron folds showing various 
ratios of limb lengths from 1 : 1 to 10 : 1. 
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principal stress, which caused the folding, acted approximately at right 
angles to the axial plane. In analyses presented hitherto, this relationship 
presents no d~ficulty, for it is considered in these various analyses that the 
principal compressive stress acted parallel to the length of a horizontal 
competent unit; and because the folds which result from such compression 
are symmetrical upright structures, the axial plane of the fold will be exact- 
ly at right angles to the initiating stress. The questions which present them- 
selves when folds are asymmetrical are: (1) does the axis of greatest prin- 
cipal stress1 act at right angles to the axial plane and (2) if this relationship 
exists, how does it come about? 

In the sections which follow, the author briefly considers the behaviour 
pattern of rock in the non-metamorphic zones of the crust and then conducts 
an analysis to show how the initiation of asymmetrical buckle folds with 
straight limbs is brought about. 

This is followed by a discussion of the manner in which, during its sub- 
sequent development, the axial plane of an asymmetrical fold may become 
approximately normal to the axis of greatest principal stress. 

R~EOLOGICAL BEHAVIOUR OF ROCK IN THE UPPER CRUST 

The application of viscous theory to the folding problem is based on the 
assumption that rock behaves as a viscous Newtonian liquid. There is, how- 
ever, much evidence which indicates that, in the upper layers of the crust, 
competent rocks have the properties not of a liquid but of a solid. The evi- 
dence and arguments leading to this conclusion have been given elsewhere 
in detail (see Price, 1966) and need not be repeated here. The rheological 
model which has been derived and which applies to competent rock for the 
relatively short time it takes a fold to develop is represented in Fig.2A, 
while the time-strain and stress-strain relationships which such a model 
exhibits are shown in Fig.2B and C. 

It can be inferred from these figures that the important feature of a 
solid is that it possesses a “yield strength”. If such a material is subjected 
to stresses which are lower than the yield value, deformation is wholly 
elastic; and this behaviour is independent of the length of time during which 
the load is applied. When the level of stress reaches that of the yieId strength, 
the behaviour pattern changes, for, depending upon the environmental condi- 
tions, the material will fail as a result of brittle, or semi-brittle rupture, 
or it will deform in a plastico-viscous, ductile manner. 

Quantitative data for the long-term yield strength of competent rock 
in the environmental conditions which obtain in the upper layers of the crust 
have not yet been obtained, and almost certainly will not be available for 
many years to come. However, enough experimental data are at hand to en- 
able one to suggest that the yield strength of a competent compacted or ce- 
mented quartzose rock, at a temperature of 150-2OO’C and confining 

‘The orientation of the prkpal stresses in and adjacent to the competent unit will, 
of course, be profoundly influenced by the disposition of the unit itself. Hence, when 
it is stated that the principal compressive stress acted normal to the axial plane of a 
fold it is tacitly assumed that the stress field is being considered as a statistical 
average, rather than in the precise sense that throughout any fold the axes of maximum 
principal stress are everywhere in the fold exactly normal to the axial plane. 
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Fig.2A. Diagrammatic representation of a Bingham-Voigt model. B. 
Time&rain relationship, at constant stress, exhibited by a Bingha~Voi~ 
model. C. Long-duration stress-strain relationship for a Bingha~Voi~ 
model obtained at constant stress (AB) and when stress increases with time 
beyond some initial value (AC). 

pressure of approximately 20,000 lb./sq.inch. is almost certainly greater than 
50,000 lb./sq.inch. and may easily be in excess of 100,000 lb/sq.inch. These 
conditions are those which may obtain at a depth of approximately 20,000 ft. 

The behaviour of rock when submitted to a tensile stress is similar in 
many ways to its behaviour in compression; however, the tensile strength of 
competent rock is very much smaller than the strength of the same rock type 
in compression. Thus, the uniaxial long-term yield strength in extension is 
of the order of l,OOO-2,000 lb./sq.inch. and appears to be relatively little in- 
fluenced by moderate values of confining pressure. 

The competence of any particular unit is controlled mainly by its min-, 
eralogical composition and its d&genetic history. Although much work needs 
to be done on the rheological properties of individual minerals, it seems prob- 
able that the minerals most resistant to deformation are in the felspar group. 
These are followed in order of increasing ease of deformation by quartz, 
dolomite, calcite and some members of the clay-mineral group. Hence, 
arkoses and quartzites are among the most competent sediments. 

The competence of a unit, for any specific composition will be largely 
determined by the degree of cohesion of the component minerals. An open- 

176 Tectonophysics, 4 (2) (1967) 173-201 



structured, porous unit will be less competent than a unit of low porosity in 
which component grains are in contact and cohere along the whole of their 
boundaries. The intergranular cohesion is affected by one of two processes, 
namely cementation and compaction. 

Units which are cemented may attain their full competence soon after 
deposition, at a time when surrounding incompetent material may exhibit 
little or no signs of compaction. In such instances, the differences in the 
elastic or strength properties of the competent and incompetent materials 
may be truly enormous. When cohesion is brought about by compaction, how- 
ever, the process is a progressive one. The cohesion will reach a maximum 
when the main factors causing compaction, namely temperature and pres- 
sures, due both to depth of burial and tectonic processes, have their maximum 
effect. Thus, in general, a competent unit only reaches its maximum compac- 
tion and hence competence when tectonic deformation ceases. 

Because the process of progressive compaction applies to neighbouring 
incompetent units as well as to the competent units, the differences in com- 
petence of the two types of unit is likely to be very much smaller than the 
differences which obtained when the competent unit was cemented. Moreover, 
the continually variable physical “constants” which will be associated with 
such progressive compaction mean that a rigorous mathematical analysis 
of the buckling problem is rendered extremely difficult. 

Where the competent unit has been cemented one may assume that the 
values of the various physical constants were in fact reasonably constant 
throughout the whole of the unit’s deformational history. However, because 
the neighbouring incompetent material is often uncemented it will undergo 
progressive compaction during the deformation; so that one must bear in 
mind that the physical “constants” of these latter units will vary progres- 
sively. 

The problem of buckling will be considered in the following sections in 
the light of the conclusions expressed above regarding the physical behaviour 
of competent and incompetent sediments in the upper layers of the crust. 

THE INITIATION AND DEVELOPMENT OF SYMMETRICAL FOLDS 

Before dealing with the development of asymmetrical folds it is first 
necessary to establish certain principles which are most readily illustrated 
by considering the mechanism of formation of perfectly symmetrical buckles. 

From the remarks made in the preceding section regarding the rheolog- 
ical behaviour of competent rock, it is clear that one may consider the initial 
deformation of a single cemented competent unit as a problem in elasticity. 
In this analysis a competent unit of semi-infinite extent is assumed to be 
buckled into a periodic wave form. Attention in the subsequent analysis is 
eentred upon a single wavelength within the wave-train. Moreover, if the 
adjacent incompetent material is uncompacted and extremely weak one may 
assume, as a first approximation, that it has negligible effect on the buckling 
of the competent layer. Thus, although relatively high pressures mav act 
normal to the surfaces of the competent unit, one can estimate the 
force (pCrit) needed to initiate buckling from the Euler equation: 

critical 

(I) 
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Fig.3. A.Half-wavelength of an elastic buckle. B. Stages in the develop- 
ment of the “elastica”. 

where E is Young’s modulus, L is the wavelength of the elastic flexure (see 
Fig.SA) and I is the moment of inertia. 

When deformation is elastic it may reasonably be assumed that the 
wavelength and the arc length are equal. Later, when the fold develops beyond 
the elastic limit, L represents the arc length, or for chevron folds it equals 
the sum of the lengths of the long and short limbs. 

It must be pointed out that Euler’s equation is an appro~mation: there 
are more accurate buckling criteria (see Salmon, 19521. However, the Euler 
form is probably the most widely known of the buckling criteria and it is 
certainly sufficiently accurate for the purposes of this paper. 

If the buckled strut possesses a rectangular section the moment of 
inertia is given by I = a3 * h/12, where a is the thickness of the strut, or unit, 
and b is its width. 

In this paper, the width of the strut, or unit, will always be taken as 
equal to unity, so that one is almost considering a simple two dimensional 
case. Consequently, the Euler equation may be written as: 

h-it - 
2 . 

ac,jt = - - 
a @=7- 2L 2 (2) 

where Ucrit is the stress needed to initiate buckling and L/a represents the 
“slenderness ratio” of the competent unit. This equation was developed for 
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engineering problems in which buckling occurred when the confining pres- 
sure was one atmosphere. Hence, in a geological environment where the 
least principal stress (~3) acts vertically and the horizontal, or greatest 
principal stress (al ) initiates buckling in the competent unit, the principal 
stresses are related to the critical buckling stress by the expression: 

acrit = crl-- a3 

It follows from eq.2 that if a long unit is subjected to a certain critical 
stress acting along its length, it will buckle. The actual initial form taken by 
this elastically deformed unit is a cosine curve which, if carried to 
extreme deflection gives rise to a form known as the “elastica”, the develop- 
ment of which is represented in Fig.JB (see Wilson, 1952). Such a form may 
develop in rubber-like materials, spring steel, etc., but will not occur in 
rock. However, before discussing this further it is necessary to consider a 
certain point deriving from eq.2. 

It may be inferred from this equation that U,rit is not a constant but is 
dependent upon the slenderness ratio (L/a) of the unit. Thus, for high ratios 
the resistance to buckling is small. In fact, the equation indicates that as 
L./a approaches infinity, Ucrit approaches zero. This is a sophism which 
results from neglecting body forces in the derivation of the Euler equation. 
As we shall see later, limits are set to the slenderness ratio when the in- 
fluence of the incompetent material is not assumed to be negligible. How- 
ever, neglecting for the time being the influence of the incompetent material, 
the relationship represented by eq.2 can be taken as a reasonable approxima- 
tion for moderate values of L/a (i.e., 10 to 20: 1). 

To enable specific values to be attached to U,rit it is necessary to as- 
sume values for Young’s modulus (E). Upper and lower limits to the value 
of this constant for cemented competent rock types may be taken as lo7 and 
lo6 lb./sq.inch, respectively. Using these values the relationship between 
a,rit and L/a is as shown in Fig.4. It will be seen that the stresses neces- 
sary to cause buckling when the ratio is less than 20 : 1 increase rapidly, 
reaching extremely high values for slenderness ratios of 5 to 6 : 1, even when 
the value of E is as low as lo6 lb./sq.inch. 

There are obvious criticisms which arise when one uses specific 
values, determined in the laboratory, of elastic moduli, strength etc. and ap- 
ply them to rocks postulated to be undergoing tectonic deformation. Never- 
theless, it is instructive to use such data which, even if they only approx- 
imate to the correct values, provide an insight into the mechanics of de- 
formation. 

It has been shown by Biot (1965) and Ramberg (1961) that when the in- 
fluence of adjacent incompetent material is taken into consideration the 
slenderness ratio of the competent buckle is given by the relationship: 

3G -L=2a 62. 
a v-- (3) 

1 

where G, and Gi represent the shear moduli of the competent and incom- 
petent material respectively. 

The shear modulus is not readily measured. However, if Young’s 
modulus (E) and Poisson’s number (m), quantities which can be measured, 
are known; then values for the shear moduli can be obtained from the rela- 
tionship: 
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Fig.4. Relationship between the critical buckling stress (ccrit) and the 
slenderness ratio (L/Q). The units of stress are dependent upon the value of 
Young’s modulus (E). When E = lO@ Ib./sq. inch and 10’ lb. sq.inch the 
buckling stress is in units of lo4 lb.fsq.inch and lo5 lb./sq.inch, respectively. 
The inset diagram shows the same relationship using a log-log graph. 

n1 * li: 
G=2(me1) (4) 

The author has found that the ratio of the shear modulus of an extremely 
competent cemented sandstone (uniaxial strength of 70,000 lb./sq.inch) to 
that of a very weak, but compacted, mudstone (uniaxial strength of less than 
1,000 lb./sq.inch) can be as high as 1,000: 1. Rutting such a value of the ratio 
in eq.3, the resulting value of the slenderness ratio is appro~m~ely 35 : 1. 
The values of the elastic moduli for the rocks quoted were determined after 
compaction had taken place. Thus, for this example, the initial ratio of the 
moduli, when the adjacent material is uncompacted, could easily have been 
in excess of 1,000 : 1, with a corresponding increase of the slenderness ratio 
of the resultant fold. Indeed, if the surrounding incompetent material is ex- 
tremely weak it approximates to a Newtonian liquid of relatively low viscosity, 
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Thus, the analysis becomes one in both elastic and viscous behaviour and it 
follows that the resistance to elastic buckling of the competent layer by the 
surrounding “liquid” will be negligible when the rate of deflection (dv/dt) of 
the competent unit is low. 

However, more commonly, the ratio of shear moduli for competent and 
incompetent material, after compaction and deformation, is usually from 5 : 1 
to 50 : 1, so that the corresponding values of L/a are from 6 : 1 to 12 : 1. When 
both competent and incompetent material are undergoing progressive compac- 
tion, the author thinks it likely that the ratios of the shear moduli will not 
vary by more than an order of magnitude throughout the process of compac- 
tion, so that the ratios of L/a of 6 to 12 : 1 are likely to obtain whenever the 
buckles are initiated. 

Examples of the slenderness ratios for single competent units folded 
in incompetent material are shown in Fig.5. The ratios of L/u (where, in this 
context, L is the arc length) which are most commonly observed in the field 
lie between 7 and 10 : 1; buckles with a slenderness ratio of 5 : 1 or less, or 
greater than about 15 : 1, are rarely observed. It is emphasised that these 
ratios refer to a single competent unit, such as may form a minor “drag”. 

i_iI-=:)’ 

Fig.5. Examples of slenderness ratios of single competent units. 
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or parasitic fold, or a single major unit. The slenderness ratio of one of a 
series of thin competent units which have been folded together as one com- 
posite unit may, of course, attain values of many thousands to one. Such ex-, 
amples are not being considered here. 

It will be clear from these remarks that the ratios predicted by theory 
are not in complete agreement with field observations, for whereas theory 
indicates the possibility of buckles existing with L/n ratios of 30 : 1 or more, 
field data indicate that the upper limit to the slenderness ratio is approx- 
imately 15 : 1. This discrepancy will be discussed later. In the meantime, it 
will be assumed that folds with large L/cl ratios may in fact be initiated. 

Local stresses within the competent unit set other limits on elastic 
buckling. When a beam or strut is deflected, stresses are set up within the 
unit purely related to its curvature. The stress at any point distance d from 
the neutral surface is: To& = E*<j/R, where R is the radius of curvature of 
the neutral surface. At the upper and lower surface of the unit the stresses 
due to bending are a maximum and a minimum and are: 

? (J = I<. n/ZR (5) 

where, as before, (1 is the thickness of the unit. The stresses are tensile at 
the upper limit when curvature is anticline and, conversely, tensile at the 
lower limit of the unit when the curvature is synclinal. When the unit is under- 
going elastic buckling, these local stresses are superimposed upon the gen- 
eral compressive stress causing the buckling. Hence, at the crest of an “anti- 
cline”, the total stresses at the upper and lower surfaces of the competent 
unit are given by: 

and: 

In the trough of the elastic “syncline”, the signs of eq.6 are reversed. 
It is evident from eq.6a that oUp becomes tensile when: 

E * ci/2R > crl (71 

Consider now, specific values of E, etc., to see how readily the stresses be- 
come tensile. Take for example a fold with a L/a ratio of 15 : 1 and let E for 
the competent material be 106 Ib./sq.inch. From Fig.4 it will be seen that the 
buckling stress (ocrit ) is approximately 16,000 lb./sq.inch. Hence, if it is 
assumed that o3 = 20,000 fb./sq.inch it follows that 01 = 36,000 Ib.fsq.inch. 
Substi~ting these values in eq.? one obtains the relationship that R = 14a. 

It is now of interest to estimate the maximum value of the elastic deflec- 
tion which occurs when the unit is on the point of failing in tension. To do this, 
it is convenient to assume that the half wavelength of the elastic buckle rep- 
resented in Fig.JA is an arc of a circle. Then, from elementary geometry it 
can be shown that: 

y&R- y,) = (L/B) (8) 

Substituting the value R = 14~ in eq.8 and remembering that for this example 
L/a = 15 : 1, then solving for _v~ one obtains the deflection in terms of the 
thickness of the unit. In this instance ?lo = 0.5n+ Similarly when L/n is 20 : 1 
and 10 : 1, the deflection when the stresses become tensile are approximately 
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0.75a and 0.375a respectively. Thus, in general, y0 = kS a, where k will vary 
directly as L/a. Because the deflection of the unit actually follows a cosine 
curve and not an arc of a circle, these values for the deflection are a little 
too large. 

If one takes the yield strength of a competent unit, folded into an anti- 
cline and under a confining pressure of 20,000 lb./sq.inch, to be 100,000 lb./ 
sq.inch, E being 106 Ib./sq.inch,then when the ratio of L/a equals 10 : 1 and 
the deflection is 0.375a, the unit will be about to fail in compression at its 
lower surface, as well as being on the point of tensile failure at the upper 
surface. For the values of E and 03 quoted above, when L/u is less than 10 : 1, 
failure always occurs in compression. This relationship helps explain why, 
in a fold belt, although some of the larger folds with relatively high L/cc ratios 
may be chevron structures, smaller folds and those with low L/u ratios 
possess rounded crests and troughs. 

The tensile and compressive stresses given by eq.6 do not develop 
uniformly along the upper and lower limits of the competent units. The form 
of the elastic buckle is not a series of circular arcs but is a cosine curve. 
Now the buckling moment is given by the critical buckling force (pc,it) multi- 
plied by the deflection at the various points along the strut. Therefore, the 
buckling moment curve will also have the form of a cosine curve. It can be 
shown that a moment (M) is related to the rate of change of slope of the elas- 
tic curve by the expression: 

_ =d’y= M 1 
R dx2 E*I 

Clearly, the rate of change of slope of the elastic buckle reaches a maximum 
when M is a maximum. This occurs at the crest and trough of the elastic fold 
and it is here that failure occurs, whether it be due to tensile or compressive 
stresses. 

If failure occurs by the development of a tensile fracture the crack will 
tend to propagate downward at the crest of an anticline, or upward at the 
trough of a syncline, until the fractures may cut completely through the unit. 
Further development of the fold merely results in the rotation of two straight 
limbs (the elastic curvature may be neglected) to form an upright symmetrical 
chevron fold. Pressure solution often removes material from the competent 
unit at the crests and troughs, thus resulting in the close contact between 
adjacent limbs usually exhibited by chevron folds (see Fig.GA). 

If failure occurs by plastic flow in compression, deformation is initiated 
at the lower surface of the unit in the crest of an anticline and at the upper 
surface in the trough of a syncline. The small zones of plastically deformed 
material reduce the resistance to buckling of the unit (see Fig.GB). If the 
stresses causing buckling remain constant, this reduction in effective resist- 
ance will result in an increase of the rate of deformation in the competent 
material in the vicinity of the crest and trough. As one may infer from Fig.ZC, 
this will have an effect on the stress-strain relationship comparable with 
“strain-hardening”. The stress necessary to deform the rock unit in the zone 
of plastico-viscous deformation will increase from yield stress uY to D,, 1. 
Meanwhile, when the stress level reaches uy in areas adjacent to the initial 
zone of plastico-viscous deformation, this new zone will yield. In this way the 
plastico-viscous deformation spreads progressively further into the com- 
petent unit and laterally away from the trough and crest. This process, which 
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Fig.6. A. Stages in the development of a chevron fold. B. Stages in the 
development of a fold with a rounded crest. C. Fold with shear failure in the 
zone of local compression below the neutral surface. 

has been noted by Wilson (19521, will result in a fold with straight limbs but 
rounded troughs and crest. This is the “plastica” type of curve cited by Wilson. 

A third possibility, of course, is that given by Seidl (1934) when failure 
in compression occurs by shear failure as indicated in Fig.GC. 

It should be emphasised that lateral migration of the crests and troughs 
of folds, of the type described by Ramberg (1963) in his paper on “drag folds”, 
is only possible when deformation is wholly elastic or wholly viscous. Once 
the competent unit yields by either tensile fracture or by rupture or plastic 
flow in compression the position of the crest and troughs are fixed and the 
lengths of the limbs are determined. In this section the fold form under dis- 
cussion is symmetrical, so that the lengths of the limbs are the same. How- 
ever, this mechanism also holds when the fold form is asymmetrical. 

THE INITIATION OF ASYMMETRICAL BUCKLES 

Where, as described above, conditions of orthorhombic symmetry hold, 
one may consider the maximum principal stress as acting normal to the axial 
plane of the fold. Similarly, because the axial planes of asymmetrical folds 
are usually inclined, it follows that at the end of a period of folding, the axes 
of maximum principal stress are also inclined. It is reasonable to assume, 
therefore, that when the asymmetrical folds were initiated, the axes of prin- 
cipal stress were also probably inclined. This obvious conclusion has been 
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reached by Goguel (1948) and Bredin and Furtak (1963), but neither of these 
authors outlined the mechanism by which the competent layers develop into 
asymmetrical buckles. 

The stress conditions which are assumed to have obtained when such 
asymmetrical folds were initiated are, therefore, as indicated in Fig.7A. 
The principal stresses can be resolved parallel and perpendicular to the 
competent unit (which is assumed to be horizontal before deformation). 
These vertical and horizontal stresses are comparable in orientation with 
those which bring about symmetrical folding; and when the intensities of the 
stresses are suitable such symmetrical folds tend to develop. However, it 
will be noted that because the axes of principal stresses are inclined, a 
distributed shear stress (T) acts along the upper and lower surface of the 
competent unit. Therefore, because the shear stresses are the only new 
factor, it is the action of 7 which must be instrumental in determining that 
the resultant buckles are asymmetrical rather than symmetrical. To study 
the influence of these shear stresses it is first necessary to consider the 
“moments of force” involved in buckling and bending. 

The quantity which is responsible for the degree of deflection of a unit 
during buckling is the “buckling moment” (Mhuc) which at any point of distance 
x from a nodal point along the line of action of the buckling force is given by: 

Mbuc = Pcrit * Y 

where y is the elastic deflection at point x. For a symmetrical fold, it has 
been noted that the maximum moment occurs at the crest and trough of the 
elastic fold form and immediately prior to elastic failure has a value given 
by: 

Mbuc max = Pcrit * Ymax 

= U.Ucrit * k ‘U 

= a2 .k ‘Ocrit (10) 

where k is the constant which as previously noted is dependent upon the 

fig.7. A. Distribution of stresses normal and parallel to a horizontal 
competent unit when the axis of greatest principal stress is inclined at an 
angle 6. B. Relationship between shear stresses (T ), shear force (S) and 
bending moment (M). 
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slenderness ratio. For example, when L/a = 20 : 1, k = 0.75. 
Consider now the action of the shear stress (7); for elastic equilibrium, 

the shear stress must also act perpendicular to the surface of the unit, as 
indicated in Fig.7B. These vertical shear stresses give rise to a correspond- 
ing shear force (S) acting normal to the surface of the unit where: 

S=a.7. (111 

It can be shown (see Salmon, 1952, p.58) that there is a relationship between 
a shearing force in a unit and a bending moment (Mb,,) such that: 

S = dMb,,/dx 

or: 

Mben = S,r dx 

Thus, when, ai here, S is a constant, M hen changes in a linear fashion along 
the length of the unit. If n/Ben is arbitrarily put equal to zero at point 0, the 
distribution of the bending moment along the length of the unit due to the 
shearing stress (T) is as indicated in Fig.8, SO that for the fold length L this 
becomes: 

A&,, =r*a*L (12) 

The deflection of the competent unit will be influenced by both the 
buckling moment and the bending moment. Because the problem, at this stage, 

Fig.8. Showing how the bending and buckling moment curves may be 
combined to give an asymmetrical total moment curve. 
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is one in elasticity, one may superimpose these moments (Mbuc and Mben) 
represented by curves OA$ALL and OL’ respectively in Fig.8. The total 
moment (Mmt) is therefore represented by curve OAjSAf L’. 

It will be noted that the points of maxima of the Mtot curve have moved 
to the left relative to the corresponding points on the Mbuc curve. The lateral 
shifts (represented by PQ and P’Q ‘) are the same for both sets of maxima so 
that the wavelengths of the curves are the same. However, it will be noted that 
the minimum value on the Mtot curve is to the right of the corresponding 
point on the Mhuc curve by an amount represented by UV. 

It has been pointed out that elastic failure occurs where dzy/dx2 are 
maxima and minima and these conditions are met when the moment curve 
reaches maximum and minimum values. Using the argument presented in 
the previous section it is therefore at Q,Q’ and V respectively, in Fig.8, that 
the anticlinal and synclinal axes will be initiated and fixed. 

It will be seen from Fig.8 that the distance VQ is less than VQ’, so that 
the syncline which would develop from the moment system represented would 
be asymmetrical. It is emphasised that the curves represented in this dia- 
gram refer to the various moments and not to deflections. Elastic deflections, 
for moderate slenderness ratios, will be relatively small and as a first ap- 
proximation may be neglected. Consequently, one ‘may take the distances VQ 
and VQ’ as representing the length of the limbs of the folds. In this instance 
the ratio of the length of the long limb (Ll) to the short limb ( Ls) is 1.4 : 1. 
It may readily be inferred from Fig.8 that the ratio q /Ls will depend upon 
the relative intensities of Mhuc and Mben. When the maximum value of Ik&, 
is small compared with that of k&,,,the ratio L1 /L, will approach unity. 
However, when the ratio of the moments is large, the ratio of the limb lengths 
will also be large. Consequently, before pursuing this argument it is of in- 
terest to estimate values for the ratio of the moments which may develop in 
various stress fields which may give rise to folding. 

Assuming that the competent unit is initially horizontal and that the 
axis of maximum principal stress is inclined at an angle 0 to the horizontal, 
then the horizontal critical stress and the shearing stresses are respectively 
given by: 

OH = ucrit + avert = 
01 +03 - _ S!+!B ’ ~0s 2 ,g 

2 (13) 

7 =v -sin28 (14) 

If the ratio of principal stresses is expressed as u1/5a = K, then eq. 13 and 
I4 may be rewritten: 

OH = 
03[K + 11 03[K - 11. cos 2e 

2 - 2 (15) 

and: 

7 =03[K- 13 
2 

* sin 28 (15) 

Hence, if one also attributes some specific value to the slenderness ratio (n), 
then: 
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However, it has been noted that if a specific value is attributed to the 
slenderness ratio and also to the elastic modulus (E), this automatically fixes 
the critical buckling stress (see Fig.411. Thus, if L/a = 20 : 1 and E = 106 
lb./sq.inch, then it follows that cr,rit is 8,500 lb./sq.inch. If it is further as- 
sumed that the vertical stress is 20,000 lb./sq.inch, then it follows that the 
total horizontal stress to cause buckling is 28,500 lb./sq.inch. These condi- 
tions for the horizontal and vertical stresses can be satisfied by a whole 
range of 03, K and 6. However, if specific values are assigned to 0*, the cor- 
responding values of 03 and K can be calculated by using eq.15 (the data for 
the vertical stress as well as the horizontal stress must, of course, be used). 
From the values thus derived one may calculate the corresponding values for 
the bending moment from eq.17. 

Also, by using the value of the maximum elastic deflection (k *a) which 
may occur for any specific slenderness ratio, the corresponding values of the 
maximum buckling moment can be obtained by using eq.10. 

It is possible, therefore, to calculate the ratio of the bending to buckling 
moments for any specific value of B , K and u3 , when the vertical stress and 
elastic modulus are also assigned specific values. The relationship between 
Mben/Mbuc and 0 (when avert = 20,000 Ib./sq.inch and E = 106 lb./sq.inch) is 
shown in Fig.9. Spot values for K (i.e., u1 /as) are indicated on the various 
curves. The curve for L/cc = 10 : 1, when f3 is greater than 18O, is represented 
dotted, because the value of K is greater than 5.0, the rock would fracture 
or deform plastically rather than buckle. 

It should be realised that the data used to calculate the maximum 
buckling moment are based on two approximations. The first is that the in- 
competent material does not influence the critical buckling stress. This as- 
sumption will result in an underestimate of U,rit, which in turn will result 
in too small a value for Mbuc. This error will be large for small values of 
L/a. The second is that used in estimating the maximum elastic deflection. 
Here it has been assumed that the form of the elastic deflection approximates 
to an arc of a circle rather than a cosine curve, which results in an over- 
estimate of the elastic deflection that is possible before failure of the com- 
petent unit. This, in turn, results in too large an estimate of the buckling 
moment. Hence, the two errors incurred by making these assumptions tend 
to cancel each other out, so that the ratios of the moments represented in 
Fig.9 may be taken as reasonably correct. It is clear therefore, that the ratio 
of the moments (~~,~~Mb~~~ may reach high values for quite modest values 
of K and 8. 

The importance of the ratio of the moments and its influence upon the 

lit is emphasised that data presented in Fig.4 are based on the assumption that the 
influence of the incompetent material may be neglected. However, in order that the 
principal stresses may act at an angle to-the competent unit and develop a shear stress 
between the incompetent and the competent materials, the incompetent material must 
be sufficiently strong to support the shear stress. For low values of Ii and 0, the 
shearing stress will be small, consequently. errors incurred by using the data rep- 
resented in Fig.4 will not be excessive, but will, of course, become increasingly larger 
and important as a source of error as these values increase. 
*9 cannot exceed 45O. For values greater than 45”, stresses normal to the unit must 
be greater than those parallel to it, so that the unit will not buckle. 
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Fig.9. Relationship between the ratio of moments and the angle 6 for 
various slenderness ratios (L/a), 

degree of asymmetry of the resulting buckle can now be investigated. 
The total moment curve can be represented by an expression of the form: 

Mtot = Q(cos x + Y*X) (18) 

where Q is a constant with the dimensions of a force and Y is the ratio of the 
moments. The positions of the maxima and minima total moments can be ob- 
tained by finding the first differential coefficient of eq.18 and equating it to 
zero. It is more instructive, however, to determine the position of the max- 
ima and minima, for various ratios of iV&en/Mbuc, by a graphical method. 
Data for ratios of moments from 1 : 1 to 6 : 1 are represented in Fig.10. It 
will be seen that the total moment curves show well-defined maxima and 
minima when compiled from ratios of moments from 1 : 1 to 5 : 1. As before, 
we take the position of the maxima and minima to fix the position of the 
sharpest flexure in the deflection curve and these in turn give the points at 
which the elastic limit is first reached. This exceeding of the elastic limit 
determines the position of the synclinal and anticlinal hinges and completely 
controls the subsequent development of the fold. 

It will be seen that the dotted lines AQ--A~ and So-S, which join the 
points of maxima and minima total moments, converge as the ratio of &en 
~~~~ increases in value. The horizontal distances between points At and Sj, 
A2 and S2, etc., therefore represent the lengths of the short limbs. Because 
the wavelength of the buckle is not altered by the influence of the bending 
moment, one can use these data to calculate the lengths of the long limbs and 
hence indicate the relationship between the ratios of Mben/Mbuc and the degree 
of asymmetry as represented by the ratio of the limb lengths (Lu’L,), see 
Fig.11. 

It will be noted that when the ratio of the moments reaches 6 : 1 the 
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total moment curve no longer possesses a maximum and a minimum but 
merely shows points of inffexion. It is therefore suggested that when the ratio 
of the moments reaches 6 : 1, or higher values, the sites of the anticlinal and 
synclinal axes are not wholly determined by the total moment curve, but are 
in part determined by minor variations in the physical or dimensional prop- 
erties of the competent unit. For example, a local 5(/, reduction in the thick- 
ness of the competent unit would result in a corresponding reduction in resist- 
ance to buckling of almost 15% Consequently, although it may be inferred that 
for a ratio of moments of 6 : 1, the ratio of limb lengths should also be approx- 
imately 6 : 1, minor variations in the dimensions of the unit may result in a 
fold with ratio of limb lengths in excess of 6 : 1. However, since the distribu- 
tion of points of relative weakness in the unit is likely to be random, there 
is no way of estimating the probable ratio of limb lengths. This argument 

Buckling mcsme 

Fig.10. Showing various total moment curves compiled from ratios of 
bending to buckling moments from ‘1 : 1 to 6 : 1. 
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Fig.11. Relationship between the ratio of moments and the resulting 
ratio of the limb lengths ( L1/Ls). 

applies to some extent when the ratio of the moments is less than 6 : 1. 
However, for small ratios of moments, it will be seen from Fig.10 that the 
fall-off in the value of the total moment on either side of the maxima and 
minima points is relatively rapid so that minor variations in thickness will 
have less influence. 

It has been noted that perfectly symmetrical folds are not often ob-, 
served in the field. The reason for this can be inferred from Fig.9 and 11,~ 
The chances of the axis of maximum principal stress acting exactly parallel 
to the competent unit is relatively small. It will be seen from Fig.9 that for 
modest values of K of 1.2 : 1 to 1.4 : 1, if the axis of principal stress is in- 
clined to the unit at as little as 23’, the ratio of the moments is 1 : 1. From 
Fig.11 it will be seen that this ratio of moments will give rise to a fold with 
limb lengths of 1.2 : 1; an “asymmetry ratio” which would be very readily 
detected in the field. 

DEVELOPMENT OF ASYMMETRICAL FOLDS 

Once the elastic limits of the material of the competent unit has been 
reached at the points of maximum curvature of the elastic buckle, the sub- 
sequent positions of the hinges of the “plastica” curve are established. 

In symmetrical folds, once the elastic limit has been exceeded, develop- 
ment of the fold takes place largely by rotation of the limbs (this is complete- 
ly true if the fold is of the chevron type) where the rotations are equal in 
amount but opposite in sense in the adjacent limbs. Clearly, the work done 
in bringing about this rotation will be equally divided between the two limbs. 

The author is of the opinion that one may apply this principle of equal 
work expended on the rotation of the two limbs to the development of 
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Fig.12. Showing angular relationships discussed in text, when the limbs 
are rotated fn a force-field (F). 

asymmetrical folds. If, for the sake of simplicity, it is assumed that the fold 
type under discussion is a chevron fold, the forces causing rotation can be 
thought of as two horizontal sets acting upon the ends of the limbs, as in- 
dicated in Fig.12. These forces (F) give rise to a turning moment causing 
rotation of the short limb and the long limb which are F. AB and F. AC re- 
spectively. 

If it is assumed that the force remains constant in value and direction 
of action throughout the development of the fold, it can be shown that the work 
done (TV) by the couple in rotating the short limb from the horizontal, through 
an angle 6, is given by: 

W, = F.L;sin6, .6, (19) 

Similarly, the work done in rotating the long limb is: 

WI = F.Ll.sin61 ‘61 (20a) 

or: 

Wl = F.~‘.L,.sin6, ‘61 (20b) 

where Ll/L, = )I’. 
If W, = WI, the rotation of the two limbs is linked by the expression: 

sin 6, ‘6, = N’ . sin 6] .bl (21) 

Thus, the difference in the rotation of the two limbs is related to the 
ratio of the limb lengths. If the unit was originally horizontal and the long 
and the short limbs rotated through angles of 61 and 6s respectively, the 
angle of inclination of the axial plane is uniquely defined, for, from Fig.12: 

6.9 + 6, t 20 = 180° (22) 

and: 

(Y +61 =p (23) 
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Fig.13. Inter-relationship between the angle of rotation of the short 
limb (bf, the angle between the two limbs (2@) and the inclination of the axial 
plane f/3), for various ratios of limb lengths (n’). 

6- 

Fig.14. Relationship between the limb length ratio (n’) and the inclina- 
tion of the axial plane (fi) for various values of 2~. 
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The inter-relationship between the angle of dip of the short limb and 
the inclination (p) of the axial plane, for various values of 2ff and n’, obtained 
by using eq.21-23, is shown in Fig.13. Clearly, from eq.21 the ratio of the 
angles of rotation is determined by the value of n’. Consequently, it follows 
that the dip of the axial plane is related to the extent of the folding, rep- 
resented by the value of 20, and to the ratio of the limb lengths, represented 
by n’. The smaller the value of 2o, the smaller is the angle of dip of the 
axial plane (/3): similarly, the larger the value of n’, the smaller the value 
of 0. These relationships, obtained from the data presented in Fig.13 are 
most readily seen in Fig.14. It may be inferred that in a fold belt (assumed 
to have originated in the manner indicated in this and previous sections) in 
which the ratio of the limb lengths (n’) is from 2 : 1 to 4 : 1, and the angle 
between the limbs (2o) is from 80 to loo”, the inclination of the axial planewill 
be from 71 to 81“. So that the axial planes in adjacent folds could reasonably 
be described as sub-parallel. 

If the axis of maximum principal stress acted at right angles to the 
axial plane then, in the instance cited it would be inclined at 9-19’ to the 
horizontal. 

It will be recalled that the ratio of limb lengths of a fold is fundamental- 
ly determined by the intensity of the shear stress (T) acting along the boundary 
of the competent unit. The intensity of this stress is controlled by both the 
intensities of the principal stresses and the angle the axes of principal stresses 
make with the competent unit. Consequently, a unique solution of the problem, 
using this type of analysis, is not possible. 

Nevertheless, the data presented in Fig.9, 11 and 14 indicate that the 
axis of greatest principal stress (which it will be remembered is, in this con- 
text, being used in a statistical sense) commonly acts at high angles to the 
axial plane. Thus, from Fig.11 it will be seen that for folds with ratios of 
limb lengths of 2 : 1 to 4 : 1, the ratios of moments which initiate such folds 
are from 3.3 : 1 to 5 : 1. From Fig.9 it will be seen that for values of K from 
1.2 to 3.0, such a ratio of moments will be obtained when 0 lies between 4 
and 12O. This range of angle overlaps the data obtained from Fig.14 and the 
maximum difference is only 15 ‘. The data presented in Fig.9 and 14 do not, 
of course, represent all possible variations of stress orientations, tightness 
of folding, etc. Even so, taking into account the various simplifying assump- 
tions made in this analysis, the data are sufficient to indicate the general 
validity of the principle that axial planes tend to develop approximately at 
right angles to the statistical axis of maximum principal stress. It should 
be noted, however, that this principle has greatest validity when the inter- 
limb angle is small. Thus, when the fold is initiated and 2~ = 180°, the axial 
plane will be normal to the competent unit and, at this stage of the develop- 
ment of the fold, will be independent of the orientation of the principal stress. 

If the ratio of the limb lengths (n’) and the ratio 6,/6 are fixed, the 
angle between adjacent synclines (i.e., of the fold envelope 3. in Fig.12 is 
determined only by the degree of folding, as represented by h . The relation- 
ship between y and n’ for various values of 2cy are indicated in Fig.15A. It 
is interesting to note that for values of n’ greater than 3.0 the maximum 
variation of y for any value of 201 is only about 3’. Thus, this angle is much 
more constant than the inclination of the axial plane; this relationship is 
probably worthy of study in the field. The data presented in Fig.lSA are 
based on the assumption that the fold is of the chevron type and that the 
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Fig.15. A. Relationship between y (see Fig.121 and limb length ratio f n ‘1 
for various values of 2~. B. Indicating possible method of estimating original 
orientation of competent unit prior to buckling. 

competent unit was originally horizontal. Therefore, for chevron folds, or in 
folds in which troughs and crests are sharply rounded and the limbs are 
relatively long and straight, one may use the measurement of y ’ based on 
field measurements to indicate the probable inclination of the competent unit 
prior to the initiation of buckling, see Fig.lbB. This relationship may, of 
course, be modified by subsequent compressive strain or shear. 

FOLDS IN MULTI-LAYERED COMPLEXES 

For the sake of simplicity in presenting the main argument, it has so 
far been assumed that we have been dealing with a single competent band set 
in thick incompetent material. However, competent and incompetent units of 
comparable thickness are commonly interbedded. Ramberg (1961) and Biot 
(1965) have shown that the behaviour of such complexes is in many ways 
comparable with the behaviour of a single competent unit set in incompetent 
material. The mathematical treatment of multi-layered complexes is, how- 
ever, somewhat laborious, for the thickness of .the individual competent and 
incompetent layers in addition to their respective elastic or viscous con- 
stants must be taken into account; but it is possible to demonstrate the 
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Fig.16. A.. Composite profile of structure developed in the Aberystwyth 
Grits in cliff sections near Llanrhwstyd, Cardigan, Wales. B. Showing resist- 
ance to buckling of various rock units exposed in the profile represented 
above. 

importance of the thickness of the various competent units from field evidence 
The structure represented in composite section in Fig.lBA occurs in a 

series of thin interbedded grits and shales of the Aberystwyth Grits. From 
this section it may be inferred that in the upper portion of the structure the 
compressive stresses never developed the same intensities as were attained 
by the stresses in the lower portions of the structure. By analogy to elastic 
buckling, the existence of a neutral surface may be inferred in the neighbour- 
hood of XX’ in Fig.lGA. 

Detailed measurements were made of the thickness of the grits and 
shale bands which comprise the 220 ft. of sediments represented in the sec- 
tion. The grit bands varied considerably in thickness, but they were similar 
in composition throughout the succession. The lengths of individual bands in 
the fold can reasonably be taken as constant. Also, ff one assumes that the 
elastic properties of all the competent bands are alike and that the influence 
of the incompetent material was negligible, then, from eq.1, the resistance 
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to buckling of any individual competent layer is propo~ional to the cube of 
the thickness of the layer. 

If it is assumed that a one inch thick grit band has unit resistance to 
buckling, then the equivalent resistance of any unit can be represented 
numerically by taking the cube of the unit’s thickness, measured in inches. 
This operation was carried out for every competent unit in the succession 
illustrated. For ease of presentation of the data, the succession was divided 
into 55 parts, each being 4 ft. in thickness. The resistance to buckling of each 
4 ft. division was then taken as the sum of the resistances of every competent 
band within the division, and are represented graphically in Fig.lGB. 

It is obvious that the divisions which comprise group X, in Fig.lfiB, 
must have profoundly influenced the development of the fold. In fact, the 
neutral surface XX’, in Fig.l6A, is situated within the limits of group X. 
The few thick grit bands which are concentrated in group X can therefore be 
thought of as a major control group, comparable in many ways with a single 
competent unit. 

DEVELOPMENT OF ANTICLINORIA AND SYNCLINORIAl 

The theory outlined above indicates that folds will develop which 
possess slenderness ratios of 35 : 1 or more. Yet, structures composed of a 
single competent unit exhibiting such slenderness ratios are not observed in 
the field. This is an apparent contradiction, upon which comment must be 
made. 

For folds to develop which have large slenderness ratios, the ratio of 
the shear moduli of the competent and incompetent material must be very 
large. As we have seen, this means that the competent material must be 
cemented and the incompetent material must be extremely weak. When such 
conditions obtain, the author believes that folds with a very large slenderness 
ratio will in fact be initiated by a critical stress of a few thousands of pounds/ 
sq.inch, acting along the length of the competent unit. If the principal stress 
acted exactly along the competent unit, it would give rise to a symmetrical 
fold. Further, assuming that the value of Young’s modulus of the competent 
material is lo6 Ib./sq.inch or more and that the depth of cover is moderate 
(say 20,000 ft.), then the fold will develop in a chevron form as indicated in 
Fig.17A. In the light of the data and conclusions of the previous paragraphs, 
although each section or profile represented in this figure is of a single 
competent unit, they could equally well represent’a multi-layered complex. 

When the limbs of the fold attain an inclination of 30°, the amount of 
horizontal shortening of the competent unit brought about by folding is approx. 
15%. In the incompetent material, it is almost certain that this horizontal 
shortening will mainly be accommodated by volume flow. That is, progressive 
compaction will occur and cause a corresponding progressive increase in the 
strength and values of the elastic moduli of the incompetent material. Thus, 
as folding progresses, the compressive stress needed to close this fold must, 
of necessity, increase in intensity. The elastic modulus of a cemented unit 

lThe words “anticlinoria” and “synclinoria” are here used to represent compounded 
anticlines and synclines in which the wavelengths are commonly between a few hundred. 
yards and a few miles. 
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Fig.17. A-C. Stages in the development of symmetrical anticlinoria and 
synclinoria. D-E. Stages in the development of an asymmetrical anticlinorium 
when the axis of greatest principal stress initially makes a large angle with 
the competent unit. 

is likely to be little changed by such compaction, whereas the shear modulus 
of the incompetent, but compacting material will eventually increase a 
hundred-fold or more. With the ratio of the shear moduli thus reduced, folds 
with a slenderness ratio of perhaps 10 : 1, or less will form when the buckling 
stresses reach a sufficient intensity. Such buckles, which may be termed 
“secondary” folds, will form on the limbs of the original structure, which 
may be referred to as a “primary” fold. Repetition of folding resulting in 
anticlinoria and synclinoria may thus develop and their component folds will 
in general exhibit slenderness ratios of less than 15 : 1. If the slenderness 
ratio of the primary fold is sufficiently large, this mechanism may even give 
rise to “tertiary” folds. 

The limbs of the primary fold may make an angle of 30’ or more with 
the axis of greatest principal stress when the secondary folds are initiated. 
Consequently, the shear stress acting along the competent units, at this time, 
will result in the secondary folds being asymmetrical. This asymmetry is, 
in this instance, in opposite senses on the opposing limbs of the primary 
structure. Whereas the primary fold may have been of the chevron type, the 
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secondary folds, because of their smaller slenderness ratio more probably 
have rounded hinges. If the axis of greatest principal stress was originally 
at low angle to the length of the unfolded competent unit the primary fold will 
be slightly asymmetrical so that the final anticlinorium will also be asym- 
metrical. Such structures are found in the cliff sections in the Culm of North 
Devon and in the Carboniferous Series of Pembroke. If the axis of greatest 
principal stress makes a large angle (30-40’) with the unfolded competent 
unit the primary structure will again be asymmetrical, but will have a larger 
ratio of limb lengths. But if, at the stage of development shown in Fig.l’fB, 
the long limb makes an angle of more than 45’ with the axis of greatest prin- 
cipal stress, the stress intensity normal to the surface of the competent unit 
in the long limb must be greater than the intensity of stress acting along the 
length of the unit. When such stress conditions prevail, secondary buckling of 
the long primary limb is not possible. The short limb, however, will be sub- 
parallel to the axis of greatest principal stress and is ideally orientated for 
secondary buckling. If the short limb is in fact parallel to the axis of greatest 
principal stress, the resulting secondary buckles will be symmetrical; but, 
of course, their axial planes will be inclined and not vertical. If the axis of 
greatest principal stress is inclined at an angle greater than the dip of short 
primary limb, then the shear stress acting along the surface of the competent 
unit will be “left-handed”, as indicated in Fig.17D. The secondary folds which 
subsequently develop on the short primary limb will, therefore, be asym- 
metrical and present the same ~‘movement picture” as that of the whole pri- 
mary structure. This disposition of primary and secondary structures 
(represented in Fig.l’lE) results from such a mechanism and have, in fact, 
developed in the Aberystwyth Grits (Price, 1962). 

The shape of folds in competent units in the upper, non-metamorphosed 
zones of the crust cannot be explained by theories based on the assumption 
that the behaviour of competent rock approximates to that of a Newtonian 
fluid. Indeed, in these upper zones, competent rock behaves as either a 
brittle or a plastic solid. Consequently, the initial deformation of such rock 
is wholly elastic, but when certain limits of stress are reached the rock fails 
either by rupture or by plastico-viscous deformation. 

When the maximum principal stress acts along a competent unit, the 
resulting elastic buckle is symmetrical, The elastic limit of the rock is first 
reached at the crests and troughs of the buckled unit, where the rate of 
change of curvature of the unit is greatest. The sites of these points of initial 
elastic failure determine the subsequent development of the fold. At relatively 
shallow depths and when the value of Young’s modulus (E) of the rock is high, 
whether the unit fails in tension and develops into chevron folds or whether 
it fails in compression and forms “plastica” type folds depends upon the 
slenderness ratio (L/u) of the buckle. The higher the value of Young’s 
modulus and the greater the depth of burial the greater must be the slender- 
ness ratio before the unit will fail in tension. 

These remarks apply equally to asymmetrical structures which, it is 
shown, are initiated when the axis of maximum principal stress is inclined 
to the unfolded competent unit or group of units. The quantity which is 
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fundanlentally responsible for the asymmetry of the fold is the shear stress. 
Such shear stresses generate a bending moment which when added to the 
buckling moment (which results from compression along the unit) results in 
a total moment curve which is asymmetrical. The asymmetry of this total 
moment curve controls the asymmetry of the resulting buckle. Such a mech- 
anism, it is shown. can give rise to folds with a marked asymmetry in which 
the ratio of the limb lengths may be in excess of 6 : 1. 

Once the fold is initiated and the position of the fold axes determined 
by elastic failure, subsequent development of the fiexure, whether it be sym- 
metrical or asymmetrical, largely takes place by rotation of the limbs. The 
work done in rotating each limb is taken to be equal. As a result, for asym- 
metrical folds, the shorter limb rotates through a larger angle. The orienta- 
tion of the axial plane of such asymmetrical structures is determined by the 
ratio of the limb lengths and the degree of folding (represented by the acute 
angle between the straight limbs). Unfortunately, a unique solution is not 
possible, but when an analysis is made, the results indicate that the axis of 
greatest principal stress will act approximately normal to the axial plane. 

Although most of the arguments presented in the paper are restricted 
to the folding of a single competent unit, field evidence is presented to in- 
dicate that the principles involved in folding a single unit or a multi-layered 
complex are similar. 

Finally, it is argued that a highly competent unit, or group of units, set 
in extremely incompetent material may be first folded into a primary struc- 
ture with a high slenderness ratio. As a result of the shortening that takes 
place, the incompetent material is compacted and becomes progressively 
more competent so that, eventually, a second and even a third generation of 
folds exhibiting progressively smaller slenderness ratios may develop on the 
limbs of the primary folds, resulting in anticlinoria and synclinoria. The 
final form of the complex of flexures is determined by the angle which the 
axis of greatest principal stress makes with the competent unit, or units. 
When this angle is large, the resulting structure can be completely asym- 
metrical, in that one of the primary fold limbs (the long one) may remain 
unfolded throughout subsequent phases when secondary and tertiary folds are 
developing in the short limb. 

The author wishes to thank his colleagues, particularly Prof. John 
Ramsey and Prof. Gilbert Wilson for reading the paper in manuscript form 
and making a number of constructive criticisms. 
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